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Hilary Putnam

“DEGREE OF CONFIRMATION” AND INDUCTIVE
LOGIC

I

ARNAP’S attempt to construct a symbolic inductive logic, fits into

two major concerns of empiricist philosophy. On the one hand, there
is the traditional concern with the formulation of Canons of Induction;
on the other hand, there is the distinctively Carnapian concern with pro-
viding a formal reconstruction of the language of science as a whole,
and with providing precise meanings for the basic terms used in meth-
odology.

Of the importance of continuing to search for a more precise state-
ment of the inductive techniques used in science, I do not need to be
convinced; this is a problem which today occupies mathematical statis-
ticians at least as much as philosophers.

But this general search need not be identified with the particular
project of defining a quantitative concept of “degree of confirmation”.
I shall argue that this last project is misguided.

Such a negative conclusion needs more to support it than “intui-
tion”; or even than plausible arguments based on the methodology of
the developed sciences (as the major features of that method may ap-
pear evident to one). Intuitive considerations and plausible argument
might lead one to the conclusion that it would not be a good investment
to spend ones own time trying to “extend the definition of degree of
confirmation”; it could hardly justify trying to, say, convince Carnap
that this particular project should be abandoned. But that is what I
shall try to do here: I shall argue that one can show that no definition
of degree of confirmation can be adequate or can attain what any rea-
sonably good inductive judge might attain without using such a con-
cept. To do this it will be necessary (a) to state precisely the condition of
adequacy that will be in question; (b) to show that no inductive method
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based on a “measure function”! can satisfy it; and (c) to show that some
methods (which can be precisely stated) can satisfy it.

F.rom this we have a significant corollary: not every (reasonable) in-
ductive method can be represented by a “measure function”. Thus, we
might also state what is to be proved here in the following form: the
actual inductive procedure of science has features which are incompati-
ble with being represented by a “measure function” (or, what is the same
thing, a quantitative concept of “degree of conﬁrmation").

1I

Let us begin with the statement of the condition of adequacy. The
first problem is the kind of language we have in mind.

What we are going to suppose is a language rich enough to take
account of the space-time-arrangement of the individuals. Languages
for which d.c. (degree of confirmation) has so far been defined are not
this rich: we can express the hypothesis that five individuals are black
and five red, but not the hypothesis that ten successive individuals are
alternately black and red. Extension of d.c. to such a language is evi-
dently one of the next steps on the agenda; it would still be far short
of the final goal (definition of d.c. for a language rich enough for the
formalization of empirical science as a whole).

In addition to supposing that our language, L, is rich enough to
describe spatial relations, we shall suppose that it possesses a second
sort of richness; we shall suppose that L contains elementary number
theory. The problem of defining d.c. for a language which is rich enough
for elementary number theory (or more broadly, for classical mathematics)
might seem an insuperable one, or, at any rate, much more difficult than
defining d.c. for a language in which the individuals have an “order”.
But such is not the case. I have shown elsewhere? that any measure func-
tion defined for an (applied) first order functional calculus can be ex-
tended to a language rich enough for Cantorian set theory; hence cer-
tainly rich enough for number theory, and indeed far richer than needful
for the purposes of empirical science. The difficult (I claim: impossible)
task is not the “extension to richer languages” in the formal sense (i.e. t0
languages adequate for larger parts of logic and mathematics) but the

1This is Carnap’s term for an a priori probability distribution. Cf. Carnap’s book
Logical Foundations of Probability (Chicago: Univ. of Chicago Press, 1950); and for an
excellent explanation of leading ideas, vide also the paper by Kemeny in this volume.

2"A Definition of Degree of Confirmation for Very Rich Languages,” Philosophy of
Science, XXIII, 58-62.
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extension to languages richer in a physical sense (i.e. adequate for tak-
ing account of the fact of order).

In short, we consider a language rich enough for

(a) the description of space-time order.

(b) elementary number theory.

The purpose of the argument is to show that d.c. cannot be adequate-
ly defined for such a language. This is independent of whether or not
the particular method of “extending to richer languages” used in the
paper mentioned is employed. But by combining the argument of that
paper with the present argument we could get a stronger result: it is
not possible to define d.c. adequately in a language satisfying just (a).

To state our condition of adequacy, we will also need the notion of
an effective hypothesis (a deterministic law).

Informally, an effective hypothesis is one which says of each indi-
vidual whether or not it has a certain molecular property M; and which
does so effectively in the sense that it is possible to deduce from the
hypothesis what the character of any individual will be. Thus an effective
hypothesis is one that we can confront with the data: one can deduce
what the character of the individuals will be, and then see whether
our prediction agrees with the facts as more and more individuals are
observed. Formally, an hypothesis h will be called an effective hypoth-
esis if it has the following properties:

(i) h is expressible in L.

(ii) if it is a consequence of h that M(x,) is true3 (where M is a mo-
lecular predicate of L and x, is an individual constant), then
h D M(x,) is provable in L.

(iii) h is equivalent to a set of sentences of the forms M(x,) and
~M (x,); where M is some molecular predicate of L, and x, runs
through the names of all the individuals.

The notion of an effective hypothesis is designed to include the hy-
potheses normally regarded as expressing putative universal laws. For ex-
ample, if a hypothesis implies that each individual satisfies the molecular
predicatet P,(x) D P,(x), we require that (for each i) (Py(x;) D Pa(x))
should be deducible from h in L, for h to count as effective,

We can now state our condition of adequacy:

1. If h is an effective hypothesis and h is true, then the instance con-

firmation of h (as more and more successive individuals are exam-
ined) approaches 1 as limit.

8Logical formulas are used in this paper only as names of themselves; never in their
object-language use.

4Le., the predicate Py (...) D Po (...); we use the corresponding open sentence to
Tepresent it.
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We may also consider weaker conditions as follows:

I Ifh is' an effective hypothesis and h is true, then the instance con-
firmation of h eventually becomes and remains greater than .9 (as
more and more successive individuals are examined).

I”. (Same as I, with 5" in place of “.9".)

Even the weakest of these conditions is violated—must be violated—
by every measure function of the kind considered by Carnap.

111

_ In I and its variants we have used the term “instance confirmation”5
mltrt?duced by Carnap. The instance confirmation of a universal hypoth-
esis 1s, roughly speaking, the degree of confirmation that the next indi-
vidual to be examined will conform to the hypothesis.

It would be more natural to have “degree of confirmation” in place
of “instance confirmation” in I, I, and 1”. However, on Carnap’s theory
the degree of confirmation of a universal statement is always zero. Car:
nap f[oes not regard this as a defect; he argues® that when we refer to
a universal statement as amply confirmed all we really mean is that the
instance confirmation is very high. I shall make two remarks about this
contention:

(1) This proposal is substantially the same as one first advanced by
Reichenbach? and criticized by Nagel.8 The criticism is simply that a
very high confirmation in this sense (instance confirmation) is compatible
with any number of exceptions.

(2) The whole project is to define a concept of degree of confirmation
w}?ich underlies the scientist’s “qualitative” judgments of “confirmed”,
“disconfirmed”, “accepted”, “rejected”, etc. much in the way that the
quantitative magnitude of temperature may be said to underlie the
qualitative distinctions between “hot” and “cold”, “warm” and “cool”,
etc. But a universal statement may be highly confirmed (or even “‘ac-
cepted”) as those terms are actually used in science. Therefore it must
have a high degree of confirmation, if the relation of “degree of con-
firmation” to “confirmed” is as just described. To say that it only has 2
high instance confirmation is to abandon the analogy “degree of con-
firmation is to confirmed as temperature is to hot”. But this analogy
explains what it is to try to “define degree of confirmation”.

8Logical Foundations of Probability, smiff.

8/bid., 572.

TThe Theory of Probability (Berkeley, 1949). See the work cited in n. 8 for an ex-
position.

8Principles of the Theory of Probability, International Encyclopedia of Unified
Science, 1, no. 6 (Chicago: Univ. of Chicago Press, 1989), 63f.
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(Carnap’s reply is to maintain the analogy, and deny that a universal
statement is ever really confirmed; what is really confirmed, on his view,
is that no exceptions will be found in, say, our lifetime, or the lifetime
of the human race, or some specifiable space-time region (which must be

finite).)
v

Before we proceed to the main argument, let us consider the possi-
bility of obviating the entire discussion by rejecting 1 (and its weaker
versions). To do this is to be willing to occupy the following position:
(a) one accepts a certain system of inductive logic, based on a function
¢ for “degree of confirmation”, as wholly adequate; (b) one simultan-
eously admits that a certain effective hypothesis h is such that if it be
true, we will never discover this fact by our system.

Such a position might indeed be defended by maintaining that cer-
tain effective hypotheses are unconfirmable in principle. For instance,
suppose that we have an ordered series of individuals of the same order-
type as the positive integers. Let h be the hypothesis that every individ-
ual in the series with a prime-numbered position is red and every indi-
vidual with a composite position is black (count x; as “composite”).

In other words, X,,X4,Xg:Xg:Xg:X1 g, €tc. are all black; xy,X3,%X5,X7,X11,
etc. are all red.

Someone might reason as follows:

The arithmetic predicates “prime” and “composite” do not appear in
a single known scientific law; therefore such a “hypothesis” is not a
legitimate scientific theory, and it is only these that we require to be
confirmable. In short, it is not a defect of the system if the hypothesis h
just described cannot be confirmed (if its instance confirmation does not
eventually exceed, and remain greater than, .9 or even .5).

But this reasoning does not appear particularly plausible; one has
only to say—

“Of course the situation described by h has not so far occurred in
our experience (as far as we know) ; but could we find it out if it did
occur’’?

I think the answer is clearly “yes”; existing inductive methods are
capable of establishing the correctness of such a hypothesis (provided
someone is bright enough to suggest it), and so must be any adequate
“reconstruction” of those methods.

Thus, suppose McBannister says:

“You know, I think this is the rule: the prime numbers are occupied
by red!"”

We would first check the data already available for consistency with
McBannister's hypothesis. If McBannister's hypothesis fit the first thou-
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sand or s objects, we might be impressed, though perhaps not enough
to “accept”. But if we examined another thousand, and then a millif;n,
and then ten million objects and McBannister’s suggestion “held-up”—
does anyone want to suggest that a reasonable man would never accept
it?

A similar argument may be advanced if instead of the predicate
“prime” we have any recursive predicate of positive integers. It may take
a genius, an Einstein or a Newton, to suggest such a hypothesis (to
“guess the rule”, as one says) ; but once it has been suggested any reason-
ably good inductive judge can verify that it is true. One simply has to
keep examining new individuals until any other, antecedently more
plausible, hypotheses that may have been suggested have all been ruled
out.

In short, if someone rejects 1 (and its several versions) he must be
prepared to offer one of the following “defenses”:

(a) I know that if h is true I won’t find it out; but I am “gambling”
that h is false.

(b) If h turns out to be true, I will change my inductive method.

Against the first “defense” I reply that such a “gamble” would be
justifiable only if we could show that no inductive method will find it
out if h is true (or at least, the standard inductive methods will not
enable me to accomplish this). But in the case of McBannister’s hypoth-
esis about the prime-numbered objects and similar hypotheses, this can-
not be urged. Against the second “defense” I reply that this defense
presupposes that one can find out if h “turns out to be true.” But, from
the nature of h, the only way to find out would be inductively. And if
one has an inductive method that will accomplish this, then one’s defini-
tion of degree of confirmation is evidently not an adequate reconstruc-
tion of that inductive method.

A

To simplify the further discussion, we shall suppose that there is only
one dimension, and not four, and that the series of positions is discrete
and has a beginning. Thus we may name the positions x;,X,,X5, . . . €tC.
(Following a suggestion of Carnap’s we will identify the positions and
the individuals. Thus “x, is red” will mean “the position x, is occupied
by something red” or “red occurs at x;"”). The modification of our argu-
ment for the actual case (of a four-dimensional space-time continuum)
is simple.?

9Thus we may suppose that x;, Xp,...are a subsequence of observed positions from
the whole four-dimensional continuum; and that the hypotheses under consideration
differ only with respect to these,
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Next we suppose a function c for degree of confirmation to be given.
Technically, ¢ is a function whose arguments are sentences h and e, and
whose values are real numbers, 0<c (h,e) <1. The numerical value of
c(h,e) is supposed to measure the extent to which the statement expressed
by h is confirmed by the statement expressed by e; thus c(h,e) may con-
veniently be read “the degree of confirmation of h on evidence e”.

Admissible functions c¢ for degree of confirmation are required by
Carnap to fulfill several conditions. One of these conditions is that the
degree of confirmation of M(x,) should converge to the relative fre-
quency of M in the sample, as more and more individuals other than
x, are examined. This requirement can no longer be maintained in
this form in the case of an ordered set of individuals; but the following
weaker version must still be required:

II. For every n (and every molecular property M) it must be possible

to find an m such that, if the next m individuals (the individuals
Xasis Xusss ¢ » « 5 Xpum) are all M, then ‘the d.c. of the hypothesis
M (Xpime1) 10 is greater than .5, regardless of the character of the
first n individuals.

If n is 10, this means that there must be an m, say 10,000,000 such
that we can say: if the individuals x4, X419, . - -, X 10,000,000 are all red,
then the probability is more than one-half that x;4.090,001 Will be red
(whether or not some of Xy, X, . .., Xy are non-red).

What is the justification of II? Let us suppose that II were violated.
Then there must be an n (say, 10) and a property M (say, “red”) such
that, for some assignment of “red” and “non-red” to xj, X5 . .., Xq9
(say, X4,X5,X are red; Xy, Xz, . . -, Xy are non-red) it holds that no matter
how many of X;1, Xya,...,are red, the d.c. that the next individual will
be red does not exceed .5. Therefore the hypothesis h: x;,X,,x3 are red;
X4X5, + « - X1 are nonred; x;4 and all subsequent individuals are red—
violates I (and in fact, even 1”). For no matter how many successive in-
dividuals are examined, it is not the case that the instance confirmation
of h (this is just the probability that the next individual will be red) be-
comes and remains greater than .5.

Thus I entails IL. But II is independently justifiable: if II were vio-
lated, then there would be a hypothesis of an exceptionally simple
kind such that we could never find it out if it were true; namely a hy-
pothesis which says all the individuals (with a specified finite number of
exceptions) are M. For we would know that h above is true if we knew
that “all the individuals with seven exceptions are red”, once we had
observed x; Xy, . .., X;o. Thus if we want hypotheses of the simple form

10Relative to a complete description with respect to M of the individuals x;, Xg, ...
Xasm. A similar “evidence” will be understood in similar cases.
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“all individuals, with just n exceptions, are M" to be confirmable (to have
an instance confirmation which eventually exceeds .5), we must accept I

One more point: ¢ cannot be an arbitrary mathematical function.
For example, if the value of ¢ were never computable, it would be no use
to anybody. All the c-functions so far considered by Carnap and other
workers in this field have very strong properties of computability. For
instance, the d.c. of a singular hypothesis relative to singular evidence
is always computable. However this will not be assumed here (although
it would materially simplify the argument); all I will assume is the
very weak condition: the “it must be possible to find” in II means by an
effective process. In other words,11 for each n (say, 10) there is some m
(say, 10,000,000) such that one can prove (in an appropriate metalanguage
M,) that if x4, X0, . .., X10,000,000 are “red”, then the d.c. that the
next individual will be “red” is greater than one-half.

If this is not satisfied, then (by an argument parallel to the above)
there is some hypothesis of the simple form “all the individuals, with
just n exceptions, are M"” such that we cannot prove at any point (with
a few exceptions “at the beginning”) that it is more likely than not that
the next individual will conform.

E.g. even if we have seen only “red” things for a very long time (ex-
cept for the seven “non-red” things “at the beginning”), we cannot prove
that the d.c. is more than .5 that the next individual will be red.

We can now state our result:

Theorem: there is no definition of d.c. which satisfies II (with the

effective interpretation of “it is possible to find”) and also
satisfies I.

The following proof of this theorem proceeds via what mathematical
logicians call a “diagonal argument”.

Let C be an infinite class of integers ny,n,,ng, . . . with the following
property: the d.c. of Red(x, ) is greater than .5 if all the preceding in-
dividuals are red; the d.c. of Red(x, ) is greater than .5 if all the pre-
ceding individuals after x, are red; and, in general, the d.c. of Red(x,,)
is greater than .5 if all the preceding individuals after x,,  are red.

The existence of a class C with this property is a consequence of II.
For (taking n — 0) there must be an n, such that if the first ny—1 indi-
viduals are red, the d.c. is greater than one-half that x, is red. Choose
such an n;: then there must be an m such that if the individuals X, .1
Xny42) » + + » Xngem 8T€ all red, the d.c. is more than one-half that X; sme1
is red; call ny . “np": ... . €tC

Moreover, if we assume the “effective” interpretation of “it must be
possible to find” in II, there exists a recursive class G with this property-

: " y . ; s
11What follows “in other words” entails the existence of such an effective process
because it is effectively possible to enumerate the proofs in M.
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(A class is “recursive” if there exists a mechanical procedure for deter-
mining whether or not an integer is in the class.) We shall therefore
asume that our chosen class G is “recursive”.

A predicate is called “arithmetic” if it can be defined in- terms of
olynominals and quantifiers.12 For instance, the predicate “n 15' squart_:
can be defined by the formula (3m) (n = m?), and is therefore arithmetic.

Now, Godel has shown that every recursive class is the extension of
an arithmetic predicate.13 In particular, our class C is the extension ‘of
some arithmetic predicate P. So we may consider the following hypothesis:
(1) An individual x, is red if and only if ~P(n)._

Comparing this with McBannister’s hypothesis:

(2) An individual x, is red if and only if n is prime. .

We see that (1) and (2) are of the same form. In fact, the pl‘EdlCE'ltE
“is prime” is merely a particular example of a recursive predicate of in-
tegers. . .

Thus the hypothesis (1) is effective. It is expressible in L, because
P is arithmetic; it satisfies condition (ii) in the definition of “effective”
(see above), because P is recursive; and (iii) is satisfied, since (1) says
for each x, either that Red(x;) or ~Red(x;).

But the hypothesis (1) violates I. In other words, a scientist who uses
¢ would never discover that (1) is true, even if he were to live forever
(and go on collecting data forever). This can be argued as follows: How-
ever we interpret “discover that (1) is true”, a scientist who has discovered
that (1) is true should reflect this in his behavior to this extent: he
should be willing to bet at even money that the next individual will be
non-red whenever (1) says that the next individual will be non-red (the
more inasmuch as the a priori probability of “non-red” is greater than
“red”). But, by the definition of C, the scientist will bet at more than
even money (when he has examined the preceding individuals) that
each of the individuals X, ,Xn,Xn, « ++» is red. Thus he will make infinite-
ly many mistakes, and his mistakes will show that he has never learned
that (1) is true.

Finally, it is no good replying that the scientist will be right more
often than not. The aim of science is not merely to be right about par-
ticular events, but to discover general laws. And a method that will not
allow the scientist to accept the law (1), even if someone suggests it,
and even if no exception has been discovered in ten billion years, is
unacceptable.

12This usage is due to Godel.

13“Uber formal unentscheidbare Siitze der Principia Mathematica und verwandter
Systeme 1" Monatshefte fiir Mathematik und Physik, XXXVIII, 178-198. Cf. Kleene’s
Introduction to Mathematics, (New York: Van Nostrand, 1952), Theorem X., 292, and
Theorem I, 241.
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VI

One might suspect that things are not so black as they have just been
painted; perhaps it is the case that every formalized system of inductive
logic suffers from the difficulty just pointed out, much as every formalized
system of arithmetic suffers from the incompleteness pointed out by
Godel. It is important to show that this is not so; and that other ap-
proaches to induction—e.g. that of Goodman,14 or that of Kemeny15 are
not necessarily subject to this drawback.

Many factors enter into the actual inductive technique of science.
Let us consider a technique in which as few as possible of these factors
play a part: to be specific, only the direct factual support16 (agreement
of the hypothesis with the data) and the previous acceptance of the
hypothesis.17 Because of the highly oversimplified character of this
technique, it is easily formalized. The following rules define the result-
ing inductive method (M):

1. Let Py, be the set of hypotheses considered at time t with respect
to a molecular property M. Le. Py,y is a finite set of effective hy-
potheses, each of which specifies, for each individual, whether or
not it is M.

2. Let hy,y be the effective hypothesis on M accepted at time t (if
any). Le. we suppose that, at any given time, various incompat-
ible hypotheses have been actually suggested with respect to a
given M, and have not yet been ruled out (we require that these
should be consistent with the data, and with accepted hypotheses con-
cerning other predicates). In addition, one hypothesis may have been
accepted at some time prior to t, and may not yet have been
abandoned. This hypothesis is called the “accepted hypothesis at
the time t”. So designating it is not meant to suggest that the other
hypotheses are not considered as serious candidates for the post of
accepted hypotheses on M” at some later t.

3. (Rule I:) At certain times ty ty ty . . . initiate an inductive test
with respect to M. This proceeds as follows: the hypotheses in
P, ,M at this time t, are called the alternatives. Calculate the
character (M or not-M) of the next individual on the basis of each
alternative. See which alternatives succeed in predicting this. Rule
out those that fail. Continue until (a) all alternatives but one have
failed; or (b) all alternatives have failed; (one or the other must

4Fact, Fiction & Forecast (Cambridge, Mass.: Harvard Univ. Press, 1955).

158"The Use of Simplicity in Induction,” Philosophical Review, LXII, 391-408.

16This term has been used in a related sense by Kemeny and Oppenheim, “Degree of
Factual Support,” Philosophy of Science, XIX, 307-324,

17This factor has been emphasized by Conant, On Understanding Science (New
Haven, Conn.: Yale Univ. Press, 1947).
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eventually happen). In case (a) accept the alternative that does not

fail. In case (b) reject all alternatives.

4. (Rule II:) hypotheses suggested in the course of the inductive
test are taken as alternatives (unless they have become inconsistent
with the data) in the next test. Le. if h is proposed in the course
of the test begun at ty, then h belongs to P, y and not to Py .
(Rule III:) if h,, is accepted at the conclusion of any inductive
test, then h, , continues to be accepted as long as it remains con-
sistent with the data. (In pa.rticu]ar, while an inductive test is
still going on, the previously accepted hypothesis continues to be
accepted, for all practical purposes.)

Ridiculously simple as this method M is, it has some good features
which are not shared by any inductive method based on a “measure
function”. In particular:

IIL. If h is an effective hypothesis, and h is true; then, using method

M, one will eventually accept h if h is ever proposed.

The method M differs from Carnap’s methods, of course, in that the
acceptance of a hypothesis depends on which hypotheses are actually
proposed, and also on the order in which they are proposed. But this
does not make the method informal. Given a certain sequence of sen-
tences, (representing the suggested hypotheses and the order in which
they are suggested), and given the “time” at which each hypothesis is
put forward (i.e. given the evidence at that stage: this consisting, we may
suppose, of a complete description of individuals x,,X,, . . . , X, for some
t); and given, finally, the “points” (or evidential situations) at which
inductive tests are begun; the “accepted” hypothesis at any stage is well
defined.

That the results a scientist gets, using method M, depend on (a) what
hypotheses he considers at any given stage, and even (b) at what points
he chooses to inaugurate observational sequences (“inductive tests”) is
far from being a defect of M: these are precisely features that M shares
with ordinary experimental and statistical practice. (Carnap sometimes
seems to sayl8 that he is looking for something better than ordinary
experimental practice in these respects. But this is undertaking a task
far more ambitious, and far more doubtful, than “reconstruction”.)

In comparing the method M with Carnap’s methods, the problem
arises of correlating the essentially qualitative notion of “acceptance”
with the purely quantitative notion of “degree of confirmation”. One
method is this (we have already used it): say that a hypothesis is accepted
if the instance confirmation is greater than .5 (if one is willing to bet

gt

18Logical Foundations of Probability, 515-520; see esp. the amazing paragraph
at the bottom of p- 5181
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at more than even money that the next individual will conform). In
these terms, we may say: using Carnap’s methods one will, in general,
accept an effective hypothesis sooner or later if it is true, and in fact
one will accept it infinitely often. But one won't stick to it. Thus these
methods lack tenacity.

Indeed, we might say that the two essential features of M are

i) corrigibility: if h is inconsistent with the data, it is abandoned;
and

ii) tenacity: if h is once accepted, it is not subsequently abandoned
unless it becomes inconsistent with the data.

It is the first feature that guarantees that any effective hypothesis
will eventually be accepted if true; for the other alternatives in the set
Py, to which it belongs must all be false and, for this reason, they
will all eventually be ruled out while the true hypothesis remains. And
it is the second feature that guarantees that a true hypothesis, once
accepted, is not subsequently rejected.1?

It would, of course, be highly undesirable if, in a system based on
“degree of confirmation” one had “tenacity” in quite the same sense. If
we are willing to bet at more than even money that the next individual
will conform to h, it does not follow that if it does conform we should
then be willing to bet that the next individual in turn will conform. For
instance, if we are willing to bet that the next individual will be red,
this means that we are betting that it will conform to the hypothesis that
all individuals are red; and also that it will conform to the hypothesis
that all individuals up to and including it are red, and all those there-
after green.20 If it does conform to both these hypotheses, we cannot go
on to bet that the next individual in turn will conform to both, for this
would involve betting that it will be both red and green.21 But we can
say this: for any effective hypothesis h, there should come a point (if h
continues to be consistent with the data) at which we shall be willing
to bet that the next individual will conform; and if the next individual
conforms, we shall be willing to bet that the next in turn will conform;
and so on. To say this is merely to say again: if it is true we ought
eventually to accept it. And it is to this simple principle that M con-
forms, while the Carnapian methods do not.

191t is of interest to compare III with the “pragmatic justification of in(_luclmrl;
given by Feigl, “De Principiis non Disputandum . .. ?" in Philosophical Analysis, ed. bY
M. Black (Ithaca, 1950).

20The difficulty occasioned by pairs of hypotheses related in this way was ﬁf‘
pointed out by Goodman. Fide “A Query on Confirmation,” Journal of Philosophy,
XLIIT, 583-385. )

21T his raises a difficulty for Reichenbach’s “Rule of Induction”; the use of the rui€
to estimate the relative frequency of “green” and “grue” (seec below) is another case in
which contradictory results are obtained.
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Moreover, that the method M has the desirable property III is closely
connected with a feature which is in radical disagreement with the way
of thinking embodied in the “logical probability” concept: the acceptance
of a hypothesis depends on which hypotheses are actually proposed. The
reader can readily verify that it is this feature (which, I believe, M shares
with the actual procedure of scientists) that blocks a ‘“‘diagonal argu-
ment” of the kind we used in the preceding section. In short, M is
effective, and M is able to discover any true law (of a certain simple
kind); but this is because what we will predict “next”, using M, does
not depend just on the evidence. On the other hand, it is easily seen
that any method that shares with Carnap’s the feature: what one will
predict “next” depends only on what has so far been observed, will also
share the defect: either what one should predict will not in practice be
compulable,22 or some law will elude the method altogether (one is
in principle forbidden to accept it, no matter how long it has succeeded).

This completes the case for the statement made at the beginning of
this paper: namely, that a good inductive judge can do things, provided
he does not use “degree of confirmation”, that he could not in principle
accomplish if he did use “degree of confirmation”. As soon as a scientist
announces that he is going to use a method based on a certain “c-
function”, we can exhibit a hypothesis (in fact, one consistent with the
data so far obtained, and hence possibly true) such that we can say: if
this is true we shall find it out; but you (unless you abandon your
method) will never find it out.

Also, we can now criticize the suggested analogy between the “in-
completeness” of Carnap’s systems, and the Godelian incompleteness of
formal logics. A more correct analogy would be this: the process of
discovery in induction is the process of suggesting the correct hypothesis
(and, sometimes, a suitable language for its expression and a mathematical
technique that facilitates the relevant computation).

But once it has been suggested, the inductive checking, leading to
its eventual acceptance, is relatively straightforward. Thus the suggestion
of a hypothesis in induction is analogous to the discovery of a proof in
formal logic; the inductive verification (however protracted, and however
Mmany “simpler” hypotheses must first be ruled out) is analogous to the
t:heck:’ng of a formal proof (however tedious). Thus one might say: the
Incompleteness we have discovered in Carnap’s system is analogous to
the “Incompleteness” that would obtain if there were no mechanical
Way of checking a proof, once discovered, in a formal logic. (Most logi-

#3Even in the case of induction by simple enumeration; i.e., there will be hypotheses
of the simple form *“all individuals from x, on are red,” such that one will not be able
0 prove that one should accept them, no matter how many “red” things one sees.
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cians23 would hesitate at applying the word “proof” in such a case.) On
the other hand, in the system M, it may take a genius to suggest the
correct hypothesis; but if it is suggested, we can verify it.

VII

The oversimplified method M ignores a great many important factors
in induction. Some of these, like the reliability of the evidence, are also
ignored by Carnap's methods. In addition there is the simplicity of the
hypothesis (e.g. the data may be consistent with McBannister's hypothesis,
and also with the simpler hypothesis “no individual is red"”); the “en-
trenchment” of the various predicates and laws in the language of
science; 24 etc.

Also, the method M is only a method for selecting among deter-
ministic hypotheses. But we are often interested in selecting from a set
of statistical hypotheses, or in choosing between a deterministic hy-
pothesis and a statistical hypothesis (the use of the “null hypothesis" 25
is a case in point). This is, in fact, the normal case: a scientist who con-
siders the hypothesis “all crows are black” is not likely to have in mind
an alternative deterministic hypothesis, though he might (ie. all the
crows in such-and-such regions are black; all those in such-and-such
other regions are white, etc.); he is far more likely to choose between this
hypothesis and a statistical hypothesis that differs reasonably from it
(e.g- “at most 90%, of all crows are black”).

It is not difficult to adapt the method M to the consideration of statis-
tical hypotheses. A statistical hypothesis is ruled out when it becomes
statistically inconsistent with the data at a pre-assigned confidence level.
(A statistical hypothesis, once ruled out, may later “rule itself back in”;
but a deterministic hypothesis, as before, is ruled out for good if it is
ruled out at all). This involves combining the method M with the stand-
ard method of “confidence intervals”. If a statistical hypothesis is true,
we cannot guarantee that we shall “stick to it”: this is the case because a
statistical regularity is compatible with arbitrarily long finite stretches
of any character whatsoever. But the probability that one will stick to
the true hypothesis, once it has been accepted, converges to 1. And if a
deterministic hypothesis is true, we will eventually accept it and “stick
to it” (if someone suggests it).26

23E.g. Quine, in Methods of Logic, 245.

2Fact, Fiction & Forecast, 95.

25(The hypothesis that the character in question is randomly distributed in the
population.)

28The above is only a sketch of the method employed in extending M to statistical

hypotheses. For statistical hypotheses of the usual forms, this method can be fully
elaborated.
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Another approach, with a feature very similar to III ab?ve, 'has been
suggested by Kemeny.27 This method rests on the. f‘ollowmg 1de‘a: the
hypotheses under consideration are assigned a simplicity order. This may
even be arbitrary; but of course we would like it to correspond as well
as possible to our intuitive concept of simplicity. Then. one selects the
simplest hypothesis consistent with the data (at a pre-assigned confidence
level).

Thus, if we have three incompatible hypotheses hy, h,, hy, we have
to wait until at most one remains consistent with the data, if we use
the method M. And this may take a very long time. Using Kemeny's
method, one will, in general, make a selection much more quickly.

On the other hand, Kemeny's method does not make it unnecessary
to take into account the hypotheses that have in fact been proposed, as
one might imagine. (E.g. one might be tempted to say: choose the 'sim-
plest hypothesis of all those in the language.) For one cannot effectively
enumerate all the effective hypotheses on a given M in the language.28
However, we may suppose that a scientist who suggests a hypothesis
shows that it is effective (that it does eftectively predict the relevant
characteristic); and shows that it does lead to different predications than
the other hypotheses. Then with respect to the class Py, 5 of hypoth.eses
belonging to the inductive test we may apply the Kemeny mf-.:thod; since
every hypothesis in the class is effective, and no two are equivalent. For
instance, one might simply take the hypothesis with the fewest symbols
as the simplest (i.e. a 10-letter hypothesis is simpler than a 20-letter);
but this would be somewhat crude. But even a very crude method such
as this represents an improvement on the method M above, and a closer
approximation to actual scientific practice.

It is instructive to consider the situation in connection with an over-
simplified example. The following excellent example is due to Good-
man;: 29

(1) All emeralds are green.

(2) All emeralds are green prior to time t; and blue subsequently.

We might object to (2) on the ground that it contains the name of a
specific time-point (t). This does not appear to me to be a good objection.
The hypothesis that the first 100 objects produced by a certain machine
will be red; the next 200 green; the next 400 red; etc. mentions a partic-
ular individual (the machine) and a particular time-point (the point at
which the machine starts producing objects). But a scientist who is
forbidden to open the machine or investigate its internal construction

27"The Use of Simplicity in Induction,” Philosophical Review, LXII, §91-408.
?8This is a consequence of Godel’s theorem.
WFact, Fiction & Forécast, T4.
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might “behavioristically” acquire a considerable inductive confidence in
this hypothesis.

Moreover, Goodman has shown how to rephrase (2) so that this objec-
tion is avoided. Define “grue” as applying to green objects prior to t; and
to blue objects subsequently. Then (2) becomes:

(2') All emeralds are grue.

What interests us about the hypotheses (1) and (2) (or (1) and (27))
is this: if time t is in the future and all emeralds so far observed are
green, both are consistent with the data. But in some sense (2) is less
simple than (1). Indeed, if the language does not contain “grue”, (1)
is simpler than (2) by the “symbol count” criterion of simplicity pro-
posed above. How do these hypotheses fare under the inductive methods
so far discussed?

Under the method M, there are three relevant possibilities: (2) may
be suggested at a time when no one has thought of (1) (highly im-
plausible); or (1) and (2) may be suggested at the same time (slightly
more plausible); or (I) may be advanced long before anyone even thinks
of (2) (much more plausible, and historically accurate). In the last (and
actual) case what happens is this: (1) is compared with, say

(3) All emeralds are red.
and (1) is accepted. Much later someone (Goodman, in fact) suggests
(2). Then (1) is still accepted, in accordance with the principle of
“tenacity”, until and unless at time t (2) turns out to be correct.

In the case that (2) is suggested first we would, of course, accept (2)
and refuse to abandon it in favor of the simpler hypothesis (1) until
experimental evidence is provided in favor of (1) over (2) at time t. As
Conant has pointed out#0 this is an important and essential part of the
actual procedure of science: a hypothesis once accepted is not easily
abandoned, even if a “better” hypothesis appears to be on the market.
When we appreciate the connection between tenacity and the feature
III of our inductive method, we may see one reason for this being so.

In the remaining case, in which (1) and (2) are proposed at the same
time, neither would be accepted before time t. This is certainly a defect
of method M.

Now let us consider how these hypotheses fare under Kcmcn)’:5
method (as here combined with some features of method M). If (1? 15
suggested first, everything proceeds as it did above, as we would wish.
If (2) is suggested first, there are two possibilities: we may have a rule
of tenacity, according to which a hypothesis once adopted should not be
abandoned until it proves inconsistent with the data. In this case things$

300n Understanding Science, chap. 3.
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will proceed as with the method M. Or, we may adopt the rule that we
shift to a simpler hypothesis if one is suggested, provided it is consistent
with the data. In this case we must be careful that only a finite number
of hypotheses are simpler than a given hypothesis under our simplicity-
ordering; otherwise we may sacrifice the advantages of the principle of
tenacity (i.e. one might go on “shifting” forever). Then we would adopt
(1) when it is suggested, even if we have previously accepted (2) and (2)
is still consistent with the data. Lastly, if (1) and (2) are suggested
at the same time, we will accept (1) (as soon as the “null hypothesis” is ex-
cluded at the chosen confidence level).31

Thus the method incorporating Kemeny's proposal has a consider-
able advantage over M; it permits us to accept (1) long before t even
if (2) and (2) are also available. In general, this method places a
premium on simplicity, as M does not.

Another suggestion has been made by Goodman. Goodman rejects (2)
as an inductive hypothesis as explicitly mentioning a particular time-
point. This leaves the version (2'), however. So the notion of entrench-
ment is introduced. A predicate is better entrenched the more often it
(or any predicate coextensive with it) has been used in inductive in-
ferences. Under this criterion it is clear that “green” is a vastly better-
entrenched predicate than the weird predicate *‘grue”. So in any conflict
of this kind, the data are regarded as confirming (1) and not (2').

Goodman’s proposal might be regarded as a special case of Kemeny's.
Namely, we might regard the ordering of hypotheses according to “en-
trenchment” as but one of Kemeny’s simplicity-orders. On the other
hand, we may desire to have a measure of simplicity as distinct from
entrenchment. (Under most conceptions, simplicity would be a formal
characteristic of hypotheses, whereas entrenchment is a factual char-
acteristic.) In this case we might order hypotheses according to some
weighted combination of simplicity and entrenchment (assuming we
can decide on appropriate “weights” for each parameter).

What has been illustrated is that the aspects of simplicity and en-
trenchment emphasized by Kemeny and Goodman (and any number of
further characteristics of scientific hypotheses) can be taken into con-
sideration in an inductive method without sacrificing the essential
characteristics of corrigibility and tenacity which make even the method
M, bare skeleton of an inductive method though it may be, superior
as an inductive instrument to any method based on an a priori prob-
ability distribution.

811t is desirable always to count the null hypothesis as simplest; i.c,, not to accept
another until this is ruled out.
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VIII

At the beginning of this paper I announced the intention to present
a precise and formal argument of a kind that I hope may convince Car-
nap. I did this because I believe (and I am certain that Carnap believes as
well) that one should never abandon a constructive logical venture
because of merely philosophical arguments. Even if the philosophical
arguments are well taken they are likely to prove at most that the scope
or significance of the logical venture has been misunderstood. Once the
logical venture has succeeded (if it does succeed), it may become im-
portant to examine it philosophically and eliminate conceptual con-
fusions; but the analytical philosopher misconstrues his job when he
advises the logician (or any scientist) to stop what he is doing.

On the other hand, it is not the part of wisdom to continue what
one is doing no matter what relevant considerations may be advanced
agamst 1t.

If the venture is logical, so must the considerations be. And in the
foregoing sections we have had to provide strict proof that there are
features of ordinary scientific method which cannot be captured by any
“measure function”. (Unless one wants to try the doubtful project of
investigating measure functions which are not effectively computable,
even for a finite universe.32 And then one sacrifices other aspects of the
scientific method as represented by M; its effectiveness with respect to
what hypothesis one should select, and hence what prediction one should
make.)

In short, degree of confirmation is supposed to represent (quanti-
tatively) the judgments an ideal inductive judge would make. But the
judgments an ideal inductive judge would make would presumably
have this character: if a deterministic law (i.e. an effective hypothesis) h
is true, and someone suggests it, and our “ideal judge” observes for a
very long time that h yields only successful prediction, he will even-
tually base his predictions on it (and continue to do so, as long as it does
not fail). But this very simple feature of the inductive judgments he
makes is represented by no measure function whatsoever. Therefore, the
aim of representing the inductive policy of such a “judge” by a measure
function represents a formal impossibility.

Now that the formal considerations have been advanced, however,
it becomes of interest to see what can be said on less formal grounds
about the various approaches to induction. In the present section, let us
see what can be said about the indispensibility of theories as instruments
of prediction on the basis of the inductive methods we have considered.

821f a particular measure-function is computable for finite universes, the d.c. of a
singular prediction on singular evidence is computable for any universe.

DEGREE OF CONFIRMATION 779

We shall find that the method M and the method incorporating Kem-
eny’s idea “‘make sense” of this; the Carnapian methods give a dia-
metrically opposite result.

To fix our ideas, let us consider the following situation: prior to the
first large scale nuclear explosion various directly and indirectly relevant
observations had been made. Let all these be expressed in a single
sentence in the observation vocabulary, e. Let h be the prediction that,
when the two subcritical masses of uranium 235 are “slammed together”
to produce a single super-critical mass, there will be an explosion. It may
be formulated without the theoretical expression “uranium 235", namely
as a statement that when two particular “rocks” are quickly “slammed to-
gether” there will be "a big bang”. Then h is also in the observation
vocabulary. Clearly, good inductive judges, given e, did in fact expect
h. And they were right. But let us ask the question: is there any me-
chanical rule whereby given e one could have found out that one should
predict h?

The example cited is interesting because there was not (or, at any
rate, we may imagine there was not) any direct inductive evidence from
the standpoint of induction by simple enumeration, to support h. No
rock of this kind had ever blown up (let us suppose). Nor had “slamming”
two such rocks together ever had any effect (critical mass had never been
attained). Thus the direct inductive inference a la Mill would be: “slam-
ming two rocks of this kind (or any kind) together does not make them
explode.” But a theory was present; the theory had been accepted on the
basis of other experiments; and the theory entailed that the rocks would
explode if critical mass were attained quickly enough (assuming a co-
ordinating definition according to which “these rocks” are U-235). There-
fore the scientists were willing to make this prediction in the face of an
utter lack of direct experiential confirmation.33

(Incidentally, this is also a refutation—if any were needed—of Bridg-
man’s view of scientific method. According to Bridgman, a theory is a
summary of experimental laws; these laws should be explicitly formulated,
and should be accepted only insofar as they are directly confirmed (ap-
parently, by simple enumerative induction). Only in this way shall we
avoid unpleasant “surprises”,34)

But, if this view is accepted, then the scientists in the experiment
described above were behaving most irrationally; they were willing to
accept, at least tentatively (and advise the expenditure of billions of
dollars on the basis of) an experimental law that had never been tested

23The physics in this example is slightly falsified, of course; but not essentially so.

34This scems the only possible reading of a good many passages in The Logic of
Modern Physics (New York, 1927).
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once, simply because it was deduced from a theory which entailed other
experimental laws which had been verified.

I believe that we should all want to say that even the most “ideal
inductive judge” could not have predicted h on the basis of e unless
someone had suggested the relevant theories. The theories (in particular,
quantum mechanics) are what conncct the various facts in e (e.g. the
fact that one gets badly burned if he remains near one of the “rocks™)
with h. Certainly it appears implausible to say that there is a rule
whereby one can go from the observational facts (if one only had them all
written out) to the observational prediction without any “detour” into
the realm of theory. But this is a consequence of the supposition that
degree of confirmation can be “adequately defined”; i.e. defined in such
a way as to agree with the actual inductive judgments of good and
careful scientists.

Of course, I am not accusing Carnap of believing or stating that such
a rule exists; the existence of such a rule is a disguised consequence of
the assumption that d.c. can be “adequately defined”, and what I hope
is that establishing this consequence will induce Carnap, as it has induced
me, to seek other approaches to the problem of inductive logic.

Thus let O be the observational language of science, and let T be a
formalization of the full-fledged language of science, including both
observational and theoretical terms. O we may supppose to be an applied
First Order Functional Calculus; and we may suppose it contains only
(qualitative) predicates like “Red” and no functors. T, on the other hand,
must be very rich, both physically and mathematically. Then we state:
if d.c. can be adequately defined for the language O, then there exists a
rule of the kind described.

Incidentally, it is clear that the possibility of defining d.c. for T
entails the existence of a rule which does what we have described (since
all the relevant theories can be expressed in T). But this is not as dis-
turbing, for the creative step is precisely the invention of the theoretical
language T.35 What one has to show is that the possibility of defining
d.c. just for O has the same consequence.

Carnap divides all inductive methods into two kinds. For those of
the first kind, the d.c. of h on e must not depend on the presence or
absence in the language of predicates not occurring in either h or e. Since
h and e do not mention any theoretical terms, the d.c. of h on e must
be the same, in such a method, whether the computation is carried out
in T or O! In short, if we have a definition of d.c. in O, what we have is
nothing less than a definition of the best possible prediction in any ev:-
dential situation, regardless of what laws scientists of the future may

35This has been remarked by Kemeny, in his paper in the present volume.
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discover. For if the degree of confirmation of h on e is, say, .9 in the
complete language T, then it must be .9 in the sub-language O.

For inductive methods of the second kind, the d.c. of h-on e depenfis,
in general on K (the number of strongest factual propertle_s). BuF, \'\:Flth
respect to the actual universe, each method of the sf:cond kind comcxde's
with some method of the first kind (as Carnap points out).3¢ Thus, if
there is any adequate method of the second kind (for the f:omplete lan-
guage T) there is also some adequate method of the first kind. o

1f we recall that the degree of confirmation of a singular prediction
is effectively computable relative to singular evidex?ce, we get the -further
consequence that it is possible in princip_le to build an elect'romc com-
puter such that, if it could somehow be gw_en all the ol?se_rvatlonal facts,
it would always make the best prediction—i.e. the predncuor} that WOl’lld
be made by the best possible scientist if he had the best possible t%leones.
Science could in principle be done by a moron (or an electronic com-
Puler '37 . . . .

From the standpoint of method M, however, the situation 1s entirely
different. The prediction one makes will depend on what laws one ac-
cepts. And what laws one accepts will depend on what laws_ are propf)sed.
Thus M does not have the counter-intuitive consequence just described.
If two “ideally rational” scientists both use M, and one thinks of quantum
mechanics and the other not, the first may predict h given e while the
second does not. Thus theories play an indispensible role.

This feature is intrinsic to M. We cannot take the class Py to be
infinite; for the proof that each inductive test will-u‘zrminate depends
on it being finite. Also there is no effective way to divide all hypotheses
into successive finite classes Py Pooso P - o in such' a way tl}at
a) every class contains a finite number of mutually incompatible effective
hypotheses, and b) every effective hypothesis is in some class.?8 M cannot
be transformed into an effective method for selecting the best hypothesis
from the class of all hypotheses expressible in the language (as opposed
to the hypotheses in a given finite class). Thus science cannot be done by
a moron; or not if the moron relies on the method M, at any rate.

The situation is even more interesting if one uses the Kemeny
method. For the simplicity of hypotheses with the same observatif)nal
consequences may vary greatly (even by the “symbol count” criterion).

36The Continuum of Inductive Methods (Chicago: Univ, of Chicago Press, 1952), 48.
For a lengthier discussion of the plausibility of making d.c. depe}'}dcnt on k, see “On the
Application of Inductive Logic,” Philosophy and Phenomenological Research, VIII, 133-
148; particularly 144.

8TReaders familiar with Rosenbloom's Elements of Mathematical Logic (Dover, 1950),
will recognize the identification of the computer with the “moron”.

38This is a conscquence of Godel's theorem, as remarked above (n. 28).
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A way of putting it is this: call two hypotheses “essentially the same” if
they have the same observational consequences. Then the relative sim-
plicity of hypotheses that are “essentially the same” may vary greatly
depending on the language in which they are couched. (For instance,
Craig has shown3? that every hypothesis can be “essentially” expressed
in O, in this sense; but the axiomatization required is infinite if the orig-
inal hypothesis contains theoretical terms, so there would be infinite
complexity.) Thus the hypothesis a scientist will accept, using a method
which includes a simplicity order, will depend not only on what hy-
potheses he has been able to think of, but on the theoretical language
he has constructed for the expression of those hypotheses. Skill in con-
structing theories within a language and skill in constructing theoretical
languages both make a difference in prediction.

X

There are respects in which all the methods we have considered are
radically oversimplified: for instance, none takes account of the reli-
ability of the data. Thus, Rule I of method M is unreasonable unless we
suppose that instrumental error can be neglected.40 It would be foolish,
in actual practice, to reject a hypothesis because it leads to exactly one
false prediction; we would rather be inclined to suppose that the pre-
diction might not really have been false, and that our instruments may
have deceived us. Again there is the problem of assigning a proper weight
to variety of evidence, which has been emphasized by Nagel. But my
purpose here has not been to consider all the problems which might be
raised. Rather the intention has been to follow through one line of
inquiry: namely, to see what features of the scientific method can be
represented by the method M and related methods, and to show that
crucial features cannot be represented by any “measure function”.

Again, I have not attempted to do any philosophic *“‘therapy”; to say
what, in my opinion, are the mistaken conceptions lying at the base of
the attempt to resuscitate the “logical probability” concept. But one such
should be clear from the foregoing discussion. The assumption is made,
in all work on “degree of confirmation”, that there is such a thing
as a “fair betting quotient”, that is, the odds that an ideal judge would
assign if he were asked to make a fair bet on a given prediction. Mctrc
precisely, the assumption is that fair odds must exist in any evidential
situation, and depend only on the evidence. That they must depend on
the evidence is clear; the odds we should assign to the prediction #rhe
next thing will be red” would intuitively be quite different (in the

39*'Replacement of Auxiliary Expressions,” Philosophical Review, LXV, 38-53.
401 am indebted to E. Putnam for pointing this out.
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absence of theoryl) if 509, of the individuals examined have been red,
and if all have been. But, I do not believe that there exists an abstract
“fairness of odds” independent of the theories available to the bettors.
To suppose that there does is to suppose that one can define the best
bet assuming that the bettors consider the best possible theory; or (what
amounts to the same thing) assuming they consider all possible theories.

Such a concept appears to be utterly fantastic from the standpoint
of the actual inductive situation; hence it is not surprising that any
definition would have to be so non-effective as not to be of any use to
anybody.

Since this assumption underlies the work of De Finetti,#1 and the
“subjective probability” approach of Savage,42 I am inclined to reject
all of these approaches. Instead of considering science as a monstrous
plan for “making book”, depending on what one experiences, 1 suggest
that we should take the view that science is a method or possibly a
collection of methods for selecting a hypothesis, assuming languages to
be given and hypotheses to be proposed. Such a view seems better to
accord with the importance of the hypothetico-deductive method in
science, which all investigators have come to stress more and more in
recent years,
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41“Sul significato suggestivo della probabilita,” Fundamenta mathematicae, XVII,
208-329.
42The Foundations of Statistics (New York: Wiley, 1954).



