EPISTEMOLOGY AND THEORY OF MACHINE LEARNING EXERCISE SET #6

(1) Let \mathcal{H}_n for $n \in \mathbb{N}$ be the hypothesis class of unions of n intervals,

$$\mathcal{H}_n = \{h_{a_1, b_1, \dots, a_n, b_n} : (\forall i \le n) (a_i \le b_i)\}$$

where

$$h_{a_1,b_1,\ldots,a_n,b_n}(x) = 1$$
 iff $x \in \bigcup_{i \le n} [a_i, b_i].$

Show that the hypothesis class $\mathcal{H} := \bigcup_n \mathcal{H}_n$ of all unions of intervals is *not* PAC learnable, but *is* nonuniformly learnable.

(2) Let \mathcal{H}^{all} be the class of *all* hypotheses $h : [0,1] \to \{0,1\}$. Show that \mathcal{H}^{all} is not even nonuniformly learnable.

Hint: Show that if \mathcal{H} is a class that shatters an infinite set K, then for each possible decomposition $\mathcal{H} = \bigcup_n \mathcal{H}_n$ there must be an \mathcal{H}_n with infinite VC dimension. Specifically, show, towards a contradiction, that otherwise we could do the following. First, construct a sequence of disjoint subsets $K_n \subseteq K$ such that $|K_n| > \operatorname{VCdim}(\mathcal{H}_n)$. Further, pick functions $f_n: K_n \to \{0, 1\}$ which are not in the restriction of \mathcal{H}_n to K_n , and combine those into a function f which is in \mathcal{H} but not in $\bigcup_n \mathcal{H}_n$.